Amazigh Character Recognition System Based on Continuous HMMs and Directional Features

نویسندگان

  • M. Amrouch
  • Y. Es-saady
  • A. Rachidi
  • M. El Yassa
  • D. Mammass
چکیده

This paper proposes a global approach to the recognition of handwritten Amazigh characters. The method used is based on continuous Hidden Markov Models and directional features. The input provided to our system is a vector of features extracted directly from an image of Amazigh characters using sliding windows technique based on hough transform. The obtained vector is translated into a sequence of observations that is used for the learning phase. This task involves several of processing steps, typically, pre-processing, normalization, skeletonization and features extraction. Finally the class of the input characters is determined by the Viterbi classifier. The experimental result indicates the promising prospect

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

A comparison between continuous and discrete density hidden Markov models for cursive handwriting recognition

This paper presents the results of the comparison of continuous and discrete density Hidden Markov Models (HMMs) used for cursive handwriting recognition. For comparison, a subset of a large vocabulary (1000 word), writer-independent online handwriting recognition system for word and sentence recognition was used, which was developed at Duisburg University. This system has some unique features ...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching

Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012